skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Robert_Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report the synthesis of a soluble precursor that transforms into crystalline SnSe at 200 °C. This transformation temperature is significantly lower than the 270–350 °C range of previously reported tin selenide precursors. This precursor is synthesized by reacting tin with dimethyl diselenide and we identify the precursor as tin(IV) methylselenolate using a combination of mass spectrometry, Raman spectroscopy, and nuclear magnetic resonance spectroscopy. We then chemically treat PbSe colloidal nanocrystals with this precursor and subject them to mild annealing. We characterize the chemical and structural changes during this processing using infrared spectroscopy, aberration‐corrected scanning transmission electron microscopy, and X‐ray photoelectron spectroscopy. These characterization studies indicate the successful formation of a SnSe‐like material that fills the interstitial space between the PbSe nanocrystal cores. We find that the electrical conductivity of these nanocrystal films is comparable to other excellent treatments used to improve charge transport. This excellent charge transport demonstrates the utility of tin(IV) methylselenolate as a conductive “glue” between nanocrystals. 
    more » « less